A model of metazoan evolution presented previously (BergstrÖm 1986 in Zoologica Scripta 15) explains deuterostomian characters as derived from protostomian ones through loosening of the constraints in the spiralian type of morphogenesis. This fits phylogenies derived from studies of molecular sequences. The model helps explain (1) the well‐known mixture of proto‐ and deuterostomian features in several groups; (2) the difficulties in making a phylogeny based on comparative anatomy, and (3) the fossil explosion in the Cambrian. Since protostomian features such as a ciliated locomotory sole and a pelagic larva with ciliary bands are widely distributed in branches of the phylogenetic tree, they must have been present in the stem of the tree. Most probably the stem forms were pseudosegmented, which helps explain how segmentation, oligomery and non‐segmentation could evolve repeatedly in derived groups. Origination of new phyla involved macroevolutionary changes primarily in the mode of feeding and locomotion. The stem phylum, from which most other phyla appear to have been derived directly, is here named the Procoelomata. Machaeridian‐type animals are referred to it. The Ediacaran‐type Precambrian fossils Cannot be placed in the metazoan evolutionary tree.


  1. Biochemical evolution
  2. Cambrian fossil explosion
  3. Deuterostomia
  4. eukaryote evolution
  5. Machaeridia
  6. macroevolution
  7. Precambrian fossils
  8. Procoelomata
  9. Protostomia

Formats available

You can view the full content in the following formats:


Bengtson, S. & Conway Morris, S. 1984: A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia 17, 307–329.
Bergström J. 1976: Early arthropod morphology and relationships. 25th International Geological Congress, Abstracts I, 289. Sydney.
Bergström. J. 1981: Morphology and systematics of early arthropods. Abhandlungen des naturwissenschaftlischen Verein Hamburg (NF) 23, 7–42.
Bergström, J. 1986: Metazoan evolution ‐ a new model. Zoologica Scripta 15, 189–200.
Carle, K. J. & Ruppert, E. E. 1983: Comparative ultrastructure of the bryozoan funiculus: a blood vessel homologue. Zeit-schrift für zoologische Systematik und Evolutionsforschung 21, 181–193.
Clark, R. B. 1964: Dynamics in Metazoan Evolution. 313 pp. Clarendon Press, Oxford.
Dzik, J. 1987: Turrilepadida and other Machaeridia. In Hoffman, A. & Nitecki, M.H. (eds.): Problematic Fossil Taxa, 116–134. Oxford University Press.
Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R. & Raff, R. A. 1988: Molecular phylogeny of the animal kingdom. Science 239, 148–753.
Gibson, R. 1972: Nemerteans. 224 pp. Hutchinson University Library.
Glaessner, M. F. 1979: Biogeography and biostratigraphy. Pre‐cambrian. In Robison, R. A. & Teichert, C. (eds.): Treatise on Invertebrate Paleontology, A79‐A118. The Geological Society of America, Inc. and the University of Kansas.
Glaessner, M. F. 1984: The Dawn of Animal Life. A Biohistorical Study. 244 pp. Cambridge University Press, Cambridge.
Goodman, M., Moore, G. W. & Matsuda, G. 1975: Darwinian evolution in the genealogy of haemoglobin. Nature 253, 602–608.
Goodman, M., Pedwaydon, J., Czelusniak, J., Suzuki, T., Gotoh, T., Moens, L., Shishikura, F., Walz, D. & Vinogra‐dov, S. 1988: An evolutionary tree for the invertebrate globin sequences. Journal of Molecular Evolution 27, 236–249.
Hadži, J. 1963: The Evolution of the Metazoa. 499 pp. Pergamon Press, Oxford.
Hendriks, L., Huysmans, E., Vandenberghe, A. & de Wachter, R. 1986: Primary structures of the 5S ribosomal RNAs of 11 arthropods and applicability of 5S RNA to the study of metazoan evolution. Journal of Molecular Evolution 24, 103–109.
House, M.R. (ed.) 1979: The Origin of Major Invertebrate Groups. The Systematic Association Special vol. 12, 1–515.
Jägersten, G. 1968: Livscykelns evolution hos Metazoa. En generell teori. 295 pp. Scandinavian University Books, Lund. (In Swedish. English edition in 1972: Evolution of the Metazoan Life Cycle, Academic Press. London and New York.)
Kaestner, A. 1969: Lehrbuch der Speziellen Zoologie. 1: Wir‐bellose, 1. Teil. 898 pp. Gustav Fischer Verlag.
Lang, K. 1963: The relationship between the Kinorhyncha and Priapulida and their connection with the Aschelminthes. In Dougherty, E.C. (ed.): The Lower Metazoa. Comparative Biology and Phylogeny, 25f–262. University of California Press, Berkeley.
Lyddiatt, A., Peacock, D. & Boulter, D. 1978: Evolutionary change in invertebrate cytochrome c. Journal of Molecular Evolution 11, 35–45.
Manton, S. M. 1973: The evolution of arthropodan locomotory mechanisms. 11. Habits, morphology and evolution of the Uniramia (Onychophora, Myriapoda, Hexapoda) and comparisons with Arachnida, together with a functional review of uniramian musculature. Journal of the Linnean Society (Zoology) 53, 257–375.
Mattisson, A. & Fänge, R. 1973: Ultrastructure of erythrocytes and leucocytes of Priapulus caudatus (de Lamarck) (Priapulida). Journal of Morphology 140, 367–380.
Meglitsch, P. A. 1972: Invertebrate Zoology (2nd ed.), 1–834. Oxford University Press, Oxford.
Nielsen, C. 1987: Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica 68, 205–262.
Nørrevang, A. 1970: The position of Pogonophora in the phylogenetic system. Zeitschrift für zoologkche Systematik und Evolutionsforschung 8, 161–172.
Runnegar, B. 1982: Oxygen requirements. biology and phylogenetic significance of the late Precambrian worm Dickin‐sonia, and the evolution of the burrowing habit. Alcheringa 6, 223–239.
Salvini‐Plawen, L. von 1972: Zur Morphologie und Phylogenie der Mollusca: Die Bezeichnungen der Caudofoveata und der Solenogastres als Aculifera, als Mollusca und als Spiralia. Zeitschrift für wissenschaftliche Zoologie 184, 205–394.
Salvini‐Plawen, L. von 1980: A reconsideration of systematics in the Mollusca. Malacologia 19, 249–278.
Salvini‐Plawen, L. von 1982: A paedomorphic origin of the oligomerous animals Zoologica Scripta 11, 77–81.
Seilacher, A. 1984: Late Precambrian and Early Cambrian Metazoa: Preservational or real extinctions? In Holland, H. D. & Trendall, A.F. (eds.): Patterns of Change in Earth Evolution, 159–168. Dahlem Konferenzen 1984. Springer‐Verlag.
Sokolov, B.S. (ed.) 1985: Vendskaya sistema, Part 1, 1–221. Akademiya Nauk SSSR. Moscow.
Sprigg, R. C. 1947: Early Cambrian(?) jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia 71, 212–224.
Vagvolgyi, J. 1967: On the origin of molluscs, the coelom, and coelomic segmentation. Systematic Zoology 16, 153–168.
Wingstrand, K. G. 1985: On the anatomy and relationships of recent Monoplacophora. Galathea report 16. 94 pp. E. J. Brill and Scandinavian Science Press Ltd, Leiden and Copenhagen.
Wolters, J. & Erdmann, V. A. 1986: Cladistic analysis of 5S rRNA and 16S rRNA secondary and primary structure ‐ the evolution of eukaryotes and their relation to Archaebacteria. Journal of Molecular Evolution 24, 152–166.

Information & Authors


Published In

Volume 22Number 31 July 1989
Pages: 259269


Received: 8 March 1988
Published online: 1 July 1989
Issue date: 1 July 1989



Jan Bergström
Geological Survey of Sweden, Kiliansgatart 10, S‐223 50 Lund, Sweden; present address: Swedish Museum of Natural History, Palaeozoology, Box 50007, S‐104 05 Stockholm, Sweden;

Metrics & Citations



Export citation

Select the format you want to export the citations of this publication.

Crossref Cited-by

  • Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review, Journal of the Geological Society.
  • Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks, Interface Focus.
  • The plankton and the benthos: origins and early history of an evolving relationship, Paleobiology.
  • Scenarios for the making of vertebrates, Nature.
  • Small shelly fossils from Antarctica: an Early Cambrian faunal connection with Australia, Journal of Paleontology.
  • The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland) , Transactions of the Royal Society of Edinburgh: Earth Sciences.
  • Radiation of the early Metazoa, Geologiska Föreningen i Stockholm Förhandlingar.
  • Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark, Geological Magazine.
  • The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity, Biological Journal of the Linnean Society.
  • Tree thinking cannot taken for granted: challenges for teaching phylogenetics, Theory in Biosciences.
  • A Parvancorina -like arthropod from the Cambrian of South China , Historical Biology.
  • The Vendian (Ediacaran) in the geological record: Enigmas in geology's prelude to the Cambrian explosion, Earth-Science Reviews.
  • The last common bilaterian ancestor, Development.
  • Articulated lepidocoleid machaeridians from the Silurian of Gotland, Sweden, GFF.
  • Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity, Journal of Morphology.
  • Cambrian acritarchs from Upper Silesia, Poland - biochronology and tectonic implications, Cambrian acritarchs from Upper Silesia, Poland - biochronology and tectonic implications.
  • Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden, Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden.
  • Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences.
  • Anomalocaris and other large animals in the lower Cambrian Chengjiang fauna of southwest China , GFF.
  • Why molecular biology needs palaeontology, Development.
  • The fossil record and the early evolution of the Metazoa, Nature.
  • Machaeridian classification, Alcheringa: An Australasian Journal of Palaeontology.
  • Functional and Ecological Aspects of Ediacaran Assemblages, Origin and Early Evolution of the Metazoa.
  • The Hyaenidae: taxonomy, systematics and evolution, The Hyaenidae: taxonomy, systematics and evolution.
  • Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland, Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland.
  • Composition and preservation of the Chengjiang fauna -a Lower Cambrian soft-bodied biota, Zoologica Scripta.
  • Metazoan phylogeny and the Cambrian radiation, Trends in Ecology & Evolution.
  • Precambrian trace fossils and the rise of bilaterian animals, Ichnos.
  • Palaeontological contributions to modern evolutionary theory: 1986 Mawson lecture, Australian Journal of Earth Sciences.
  • Articulated halkieriids from the Lower Cambrian of north Greenland, Nature.

View Options

View options


Download PDF

Get Access

Restore guest purchases

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Figures and Media






Share the article link

Share on social media

Share on Messenger